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Mirror Symmetry

@ phenomenon first arose in various forms in string theory

o mathematical predictions (Candelas-de la Ossa-Green-Parkes
1991)

@ mathematically it relates the symplectic geometry of a
Calabi-Yau manifold X9 to the complex geometry of its mirror
Calabi-Yau Y¢

o first aspect is the topological mirror test hP9(X) = h9=P:9(Y)

o compact hyperkihler manifolds satisfy h?9(X) = h9=P:9(X)

o (Kontsevich 1994) suggests homological mirror symmetry
DP(Fuk(X,w)) = DP(Coh(Y, 1))

o (Strominger-Yau-Zaslow 1996) suggests a geometrical
construction how to obtain Y from X

@ many predictions of mirror symmetry have been confirmed -
no general understanding yet
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Hodge diamonds of mirror Calabi-Yaus

Fermat quintic X X = X/(Zs)?
1 1
0 0 0 0
0 1 0 0 101 0
1 101 101 1 1 1 1 1
0 1 0 0 101 0
0 0 0 0
1 1
K3 surface X X mirror K3
1 1
0 0 0 0
1 20 1 1 20 1
0 0 0 0
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Strominger-Yau-Zaslow

o X CY 3-fold
@ Y mirror CY 3-fold

o B is 3-dimensional real manifold - mostly S3

X6 Yo

A

B3

m and 7 are special Lagrangian fibrations

for generic x € B3

Ly=m"1x)=T3and [, = ﬁ_l(x) & T3 are dual special
Lagrangian tori

generically Y® can be thought of as the moduli space of flat
U(1) connections on a generic fiber L, (a.k.a. D-branes)
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Langlands duality

o the Langlands program aims to describe Gal(Q/Q) via
representation theory
o G reductive group, LG its Langlands dual
o e.g "‘GL, = GLp; 'SL, = PGL,, 'PGL, = SL,
o [Langlands 1967] conjectures that
{homs Gal(Q/Q)— G(C)} + {automorphic reps of “G(Ag)}
o G = GLy ~ class field theory
G = GL3 ~» Shimura-Taniyama-Weil
o function field version: replace Q with Fg(X), where X/Fq is
algebraic curve
o [Ngd, 2008] proves fundamental lemma for Fq(X) ~» FL for Q
o geometric version: replace Fg(X) with C(X) for X/C
@ [Laumon 1987, Beilinson—Drinfeld 1995]
Geometric Langlands conjecture
{G-local systems on X}« {Hecke eigensheaves on Bun.(X)}
o [Kapustin—Witten 2006] deduces this from reduction of
S-duality (electro-magnetic duality) in N =4 SUSY YM in 4d
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Hamiltonian system: (X?9,w) symplectic manifold

H : X — R Hamiltonian function Xy Hamiltonian vector field
(dH = (X))

f: X — Ris a first integral if Xyf = w(Xf, Xy) =0

the Hamiltonian system is completely integrable if there is
f=(H=f,...,fy): X — R generic such that

w(Xg, Xr) =0

the generic fibre of f has an action of R? = (X, ... , Xe,) ~
when f is proper generic fibre is a torus (S!)¢

examples include: Euler and Kovalevskaya tops and the
spherical pendulum

algebraic version when replacing R by C ~» many examples
can be formulated as a version of the Hitchin system

a Hitchin system is associated to a complex curve C and a
complex reductive group G

it arose in the study [Hitchin 1987] of the 2-dimensional

reduction of the Yang-Mills equations
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Topological mirror tests

@ In these lectures we will discuss the mirror symmetry proposal
of [Hausel-Thaddeus 2003]:
" Hitchin systems for Langlands dual groups satisfy
Strominger-Yau-Zaslow, so could be considered mirror
symmetric; in particular they should satisfy the topological
mirror tests:”

° Mg (SLn) br(PGLy)

Conjecture (Hausel-Thaddeus 2003, " Topological mirror test")

For all d, e € Z, satisfying (d,n) = (e,n) =1, we have
e Bd
ES (MB(SL)ix,y) = EE' (MBR(PGL,):x,v ).
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The moduli space of vector bundles on a curve - GL,

@ C smooth complex projective curve of genus g > 1
o fix integers n > 0 and d € Z always assume (d, n) = 1.
o N9 :=

moduli space of isomorphism classes of
semi-stable rank n degree d vector bundles on C
o constructed using geometric invariant theory (GIT)
or gauge theory
@ vector bundle E is called semi-stable (stable) if every proper
subbundle F satisfies

(<)
u(F) = S0 D ) - 22D

o when (d, n) =1 semi-stability < stability ~»
N is a non-singular projective fine moduli space
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SL, and PGL,

det: N9 — Jac?(C)
[E] — A"(E)

(*]
o fix A € Jac?(C) and let NN := det 1(A) c V¢
the moduli space of (twisted) SL,, bundles on C

o N does not depend on the choice of A € Jac?(C) just write
A= AP

o when (d, n) =1~ N9 is non-singular and projective
o Pic%(C) = Jac’(C) acts on N9 via (L, E) — L ® E. define
N .= N9/ Pic(C)
the moduli space of degree d PGL,, bundles on C

o I :=Pic%(C)[n] = Z% c Pic°(C) acts on N and clearly
N9 =N9/T ~ N9 is a projective orbifold.
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Cohomology of A/

o The cohomologies H*(N?), H*(N'9) and H*(N) are well
understood.

o [Harder—-Narasimhan 1975] obtained recursive formulae for
#N(Fq) ~ formula for Betti numbers via the Weil
conjectures [Deligne 1974]

o [Atiyah—Bott 1981] gave different gauge-theoretic proof

Theorem (Harder—Narasimhan, 1975)

The finite group T acts trivially on H*(N9).
In particular H*(N'¥) = H*(N'9).

o proof by showing #/N9(F,) = #N9(F,)
o [Hitchin, 1987] = false for moduli space of SLy Higgs
bundles ~+ non-triviality of our topological mirror tests
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The Hitchin map - GL,

e T*N is a (non-projective) algebraic symplectic variety
o the ring C[T*N] is known to be finitely-generated
o the affinization of T*A\ gives the GL, Hitchin map.

X: T"N — A := Spec(C[T*N])
o deformation theory ~ Tigi\' = HY(C,End(E))
Serre duality = TN = HO(C,End(E) ® K)
o ¢ € H(C,End(E) ® K) is a Higgs field
locally "a matrix of one-forms on the curve”
o let (E,¢) € T*N its characteristic polynomial
x(¢) = t" + art" 1 + ..+ a, where a; € HO(K™)
X: TN — A=, HK"
(E,¢) = (al,ag,...,a,,)
@ The affine space A is called the Hitchin base.
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Hitchin map for SL, and PGL,

o for SL,
TN = H(Endo(E) © K)

that is, a covector at E is given by a trace free Higgs field.
o the SL, Hitchin base is

A=A = EB H°(C, K').
i=2

o the SL, Hitchin map
X: TN — A%
o the action of I = Pic®(C)[n] on T*N is along the fibers of ¥
= ¥ descends to the quotient
o the PGL,, Hitchin map:
R:(TN)/T — A=A
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The Hitchin map is an integrable system

o recall that T*N is an algebraic symplectic variety
@ with canonical Liouville symplectic structure
@ as the Hitchin map only depends on the cotangent direction

a4

Theorem (Hitchin, 1987)
o w(Xy;, Xy;) = 0 for any two x;, x; € C[T*N] coordinate
functions.
o dim(A) = dim(N) = dim(T*N)/2

o generic fibres of x are open subsets of abelian varieties

~» x Is an algebraically completely integrable Hamiltonian system.

o Need to projectivize x to complete the generic fibres to
abelian varieties (compact tori)
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Proper Hitchin map

o (E,¢) € T*N ~» E is stable; to projectivize x we need to
allow E to become unstable.

o A Higgs bundle is a pair (E, ¢) where E is a vector bundle on
C and ¢ € H°(C,End(E) ® K) is a Higgs field.

o a Higgs bundle (E, ¢) is (semi-)stable if for every ¢-invariant

proper subbundle E we have p(F) (i) u(E)

o M the moduli space of (semi-)stable Higgs bundles, a
non-singular quasi-projective and symplectic variety,
containing T*A C MY as an open dense subvariety

o extend x : M9 — A in the obvious way

Theorem (Hitchin 1987, Nitsure 1991, Faltings 1993)

X s a proper algebraically completely integrable Hamiltonian
system. lIts generic fibres are abelian varieties.

o as codim(M9\ T*N?) > 2 Haries

by the Theorem J ”
= Spec((C[M ]) = SpeC(C[T*N ]) 15/39

CM9 = C[T*N] =



SL, Hitchin system

o fix A € Jac?(C)

@ E vector bundle on C with determinant A

o ¢ € H'(Endg(E) ® K) is trace-free Higgs field

o then (E, ¢) is an SL,-Higgs bundle

o M" ¢ M? moduli space of (semi-)stable SL,-Higgs bundles
o MM is independent of A denote M9 := MA

o M is a non-singular quasi-projective and symplectic variety

@ characteristic polynomial of ¢ gives SL,-Hitchin system

¥ M4 — A% =@ ,HY(C; K')

o X is proper and a completely integrable system
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PGL, Hitchin system over the same Hitchin base

o T*Pic%(C) = Pic%(C) x H(C,K) is a group; it acts on M¢
by (L, #)(E,¢) = (L E, o +¢)

o ~» action of I' = Pic°[n] on M?

o M7= M4/T*Pic®(C) = x1(A%)/Pic°(C) = M/T

o MY, the PGL, Higgs moduli space, is an orbifold

o the I action is along the fibers of ¥ ~» PGL, Hitchin map

R: MI=Mr — A°

Md ./\'}le
™A
.AO

o will show generic fibers are dual Abelian varieties;
which are complex Lagrangian due to integrable system

@ changing complex structure will lead to special Lagrangian
fibrations; and so to SYZ
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Spectral curves

let (E, ¢) be a Higgs bundle such that x(¢) = a € A has the
form

a=t"+at" +. +ap,
where a; € HO(K").
What should be the spectrum of the Higgs field ¢?

o at p € C the Higgs field ¢, : E;, — E, ® K,

eigenvalue v, of ¢, satisfies Jv € E, —0: ®p(v) = vpv. ~
must have v, € K,

let X denote the total space of K then C, := UpeCV,i, C X,
the set of all eigenvalues of the Higgs field ~» spectral curve
scheme structure on C,7

tautological section A € H(X, 7*K) satisfying A\(x) = x

Ss =N+ a4 44, € HO(X,TF*KH)

Ca = s;1(0) C X spectral curve

w51 C3 — C spectral cover of degree n
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Generic fibres of the Hitchin map

o assume G, is smooth < a € Areg; (E,8) € x 1(a) =1 M,

o if v, € C; C X then L, C w;(E) vp-eigenspace in E, ~»
L :=ker(AMdg — 73(¢)) C m5(E) subsheaf rank 1 ~ invertible
as C; is smooth such that
m«(L(A)) = E (eigenspace decomposition of ¢)

o starting with a line bundle M € Jac?(C,) we construct
E = m.(M) rank n degree d’ = d — n(n — 1)(g — 1) torsion
free ~ locally free and Higgs field
¢ = m(N) : (M) = 7(M) ® K pushing forward the
tautological map A : M — M @ 7*(K)

o by definition A solves the characteristic polynomial a on C,; ~»
so will ¢ ~ by Cayley-Hamilton x(¢) = a

o the spectral curve of a proper Higgs subbundle of
(E,¢) = (m«(M), (X)) would be a 1-dimensional proper
subscheme of C, = (E, ¢) is stable

!
For a € Ajeg we have Mg &~ Jacd.




Generic fibers for SL, and PGL,-Hitchin map

o recall (E,¢) SL,-Higgs bundle if tr(¢) = 0 and
det(E) = A € Jac?' (C)
o define Prym?(C)  Jac?(C,) by

L € Prym?(C,) © detm, (L) = A

o ifae .A(,]eg

M, =% Y(a) = Prym9(C,).

o for PGL, we have M, := {~1(a) = M, /T = Prym?(C,)/T
makes sense since for L, € Pic(C)[n] we have
det(mi(7(Ly) ® L)) = det(L, @ (L)) = L] @ det(m.L) =
det(m,L).

o alternatively M, = M,/ Pic®(C) = Jac?(C,)/ Pic®(C)

o where Pic®(C) acts on Jac?(C,) via the homomorphism
7t Pic®(C) — Pic%(C,)

the SL,-Hitchin fibre satisfies
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Symmetries of the GL, and PGL,, Hitchin fibration

o for GL,: fix a € Areg

o tensor product gives a simply transitive action of Pic®(C,) on
Jac?(C,)

@ ~» M, is a torsor for P, := Pico(Ca)

o for PGL,: fix a € A?eg

M, = M,/ Pic’(C)

is a torsor for the quotient P, := P,/ Pic®(C) abelian variety
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Symmetries of the SL, Hitchin fibration

o recall the spectral cover map 7 : C; — C
o for an abelian variety A the dual A := Pic’(A)

For a e .A(,’eg the norm map Nmc, ¢ : Pic%(C,) — Pic®(C)
is defined in any of the following three equivalent ways:
@ D divisor on G5, Nmc,,c(O(D)) = O(m.D)
@ For L € Pic%(C,) define
Nmc, c(L) = det(m(L)) ® det=}(m.O¢,).
© the norm map is the dual of the pull-back map
7t Pic®(C) — Pic%(Cy), that is
Nmc,/c =7 : Pic%(C,) = PViCO(Ca) — Pvico(C) ~ Pic%(C).

o the Prym variety Prym%(C,) := ker(Nmc,/c) acts on
Prymd(Ca) = M, ~ M, is a torsor for P, := Prym%(C,).
o for PGL,: Ma is a torsor for
P, = Pic®(C,)/ Pic®(C) = Prym®(C,) /T = P,/T 273



Duality of the Hitchin fibres

@ short exact sequence of abelian varieties:

cha/c

0 — Prym%C,) — Pic®C) = Pic(C) — 0
o the dual sequence is
0 — Pym)(C.) « PIic%C) & Pic(C) — 0,

0~ E’a = PicO(Ca)/ Pic(C) = .‘53, = P, and P, are dual
abelian varieties

Theorem (Hausel-Thaddeus, 2003)

For a regular a € A(,)eg M, and Ma are torsors for dual Abelian

varieties (namely P, and P,).
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Strominger-Yau-Zaslow for Mpy and My

M4 Me
¢40

generic fibers are torsors for dual Abelian varieties

as Y and ¥ are integrable systems = the fibers are complex
Lagrangian (i.e. w® = wy + iwk is zero on the fibers)
[Hitchin, 1987] shows that M is hyperkihler and (M, J) is

the moduli space Mpr of (twisted) flat SL,-connections on C

~ M%R DR
¢40

the fibers of ¥ on Mpgr now are special Lagrangian because
both w, and Im((wk + iw;)?9) restrict to zero on the fibers
Strominger-Yau-Zaslow is satisfied for Mpg and Mpg!
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E-polynomials

o (Deligne 1972) constructs weight filtration
Wo C - C Wi C--- C Wag = HI(X; Q) for any complex
algebraic variety X, plus a pure Hodge structure on Wy /Wj_1
of weight k

@ we say that the weight filtration is pure when
Wi/ Wi—1(H{(X)) # 0 = k = i; examples include
smooth projective varieties, M? and M%R

o define E(X;x,y) =Y (—1)x'y/h'¥ (Wi/Wi_1(H(X,C)))

ij,d

@ basic properties: ’
additive - if X; C X locally closed s.t. UX; = X then
E(X:x,y) =22 E(Xiix,y)
multiplicative - F — E — B locally trivial in the Zariski
topology E(E; x,y) = E(B;x,y)E(F;x,y)

@ when weight filtration is pure then
E(Xi—x,=y) =304 hP-9(HET9(X))xPy is the Hodge
E(X;t,t) is the Poincaré polynomial
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Stringy E-polynomials

o let finite group I act on a non-singular complex variety M

o Exc(M/T:x,y) =3 1y1eir) E(My/C(7); x, y)(xy)F()
stringy E-polynomial

e F(v) is the fermionic shift, defined as F(v) = > _ w;, where
acts on TX|x, with eigenvalues ™, w; € [0,1)

o F(7v) is an integer when M is CY and I acts trivially on Ky

e motivating property [Kontsevich 1995] if f: X — M/T
crepant resolution < Kx = f*Kjyr then
E(X;x,y) = E«(M/T; x,y)

o if B is a -equivariant flat U(1)-gerbe on M, then on each
M., we get an automorphism of B[, ~+ C(7)-equivariant
local system Lg

@ we can define

EZ(M/T:x,y) = Y 11er E(Mys L i x, y) €O (xy) FO)
stringy E-polynomial twisted by a gerbe
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Topological mirror symmetry conjecture - unravelled

Conjecture (Hausel-Thaddeus, 2003)

(d,n) = (e,n) = 1; B the canonical [-equivariant gerbe on My

E(M@y) = EE*(Mep) &  E(MY) = EZ* (W)

@ Theorem for n = 2,3 using [Hitchin 1987] and [Gothen 1994].
o as I acts on H*(M9) we have ~»
H (M) = @, Hi (M) ~

rel variant

—_—~
EMY) = YpEWM) = BMY) + ) E(M)

rel*
|

EE'(Me) = Y r E(MS, Lg,)" = EMNT + Y E(MIYT, Lga,)

yer*

-

stringy
o = HY(C,Z,) and wedge product induces w : [ = [
o refined Topological Mirror Test for w(y) = &:
E.(M9) = E(ME/T, L ,)(xy)F ()
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Example SL,

o fixn=2d=1
o T:=C* actson M by A- (E,¢) — (E, \- ¢)) "&*

H*(M) = Dr e HHH(F) as M-modules

o Fo = N where ¢ = 0; then [Harder-Narasimhan 1975] =
H*(Fo) is trivial I-module
efori=1,...,g—1

Fi=1{(E.0) | E= Lioly, ¢ = ( > 0 ) o € H(L; LK)}

~+ F; — $26721=1(C) Galois cover with Galois group I’

Theorem (Hitchin 1987)

The I action on H*(F;) is only non-trivial in the middle degree
2g —2i — 1. Fork € ['* we have

i 2g — 2



Example PGL,

o vy el =Pi(O)2] ~ C, £ C with Galois group Zs

o
M(GLy, C,) = T* Jac?(C,) P pyd S5 M
I | det
T* Jac?(C,) NnlC [ T+ jacd(C) 5 (A0)

o let M(GLi1, C,) := Np(C,/C)~L(A,0) endoscopic H.-Higgs
moduli space

o after [Narasimhan—Ramanan, 1975]
M, = M(GL1, C,)/Zy = T*Prym9(C,/C)

o can calculate dim H2&=2+1( M., /T, Lg.)= (2g252_iz—1)
and 0 otherwise

Theorem (Hausel-Thaddeus, 2003)

when n =2 and k = w(7)
Eo(M; u,v) = E(M,/T; Lg ., u, v)(uv)FO)
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Character varieties

o the GL,-character variety:
MG = {(Ai, B))i=1.g € GLZE | [A1, B] ... [Ag, Bg] = (i In} // PGL,
non-singular, affine
o the SL,-character variety:
M(é = {(Ai, Bi)i=1..g € SL%E | [A1, B1] ... [Ag, Bg] = Cg/n}//PGLn
non-singular, affine
o for PGL, note that (C*)%€ acts on M% and
= (Z,)% c (C*)% acts on M¢

M, = /\/vl‘é/r > M9 /(C*)? is an affine orbifold

Theorem (Non-Abelian Hodge Theorem; Simpson, Corlette)

s diff & RH ¢

Vd ~J ~
Dol — MDR e MB

o RH is complex analytic =; so SYZ satisfied by M& and Mg

Conjecture (Hausel-Villegas, 2004)
E(Md;u, v):Es’fd( % U, V) b/ 30

(d,n)=(e,n) =1



Arithmetic technique to calculate E-polynomials

o E-polynomial of a complex variety X:
E(X;u,v)= Zi%q(—l)"hp’q(Gr,l/VHé(X))upvq
where W C Wi C...C W, C...C Wzk:Hé‘(X) is the
weight filtration.

o Mp have a Hodge-Tate type MHS i.e. h?9 = 0 unless p = q
E(X;u,v)=E(X,uv) = Zl-’k(—l)" dim(GrlV HL(X))(uv)¥,
but the MHS is not pure, i.e k # i when h(k/2k/2) oL (.

o X/Z has polynomial-count, if
E(q) = |X(Fq)| € Q[q] is polynomial in g.

Theorem (Katz, 2006)
When X /Z has polynomial-count E(X/C, q) = |X(Fy)|

o C* = C\ {0} over Z as the subscheme {xy = 1} of A%, Then
E(Cq) =[(Fy)l=g-1
o since H2(C*) has weight g and H}(C*) has weight 1 ~

checks with Katz
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Arithmetic harmonic analysis on M,

o for any finite group G, [Frobenius 1896, ..., ..., TQFT
[Freed—Quinn 1993] ~»

Hal,bl,...,ag,bgeG|H[ai,bi]=ZH = Z %X()

x€lrr(G
o when ¢, € Fy, i.e n[g — 1, we get

Katz

Z |GLn(Fq)|2g_2_X(Cg 1)
1)28—2 1

CeiGLE) x(1) x(1)

Irr(GL,(Fg)) described combinatorially by [Green, 1955] ~»

formula for E(Mg; q) [Hausel-Villegas, 2008]
o when nlg—1

Katz ’SLn(]FCI)lzgi2 X( g I)
Mg; q) = |[ME(F -
E(Ms;q) "= |ME(Fy)| = xe,,,(:‘;nmq» O

Irr(SL,(F4)) more difficult; only need value of x(¢Z - 1) ~
Clifford theory ~+ calculation of E(Mg; q) by [Mereb 2010]

E(Mz; q) "= |[ME(Fq)| = (¢-1)
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Character table of GLy(F,)

Table 1: characters of GL,(F,)

(note that |GLx(F,)| = q(q — 1)* (¢ + 1))
a 0 a 0 x 0 a 1

6D 6y ]G (6

asses aeF; a,beF; xeFh acly

a#b z#Fx

Number of
classes o - (¢=1)g=2) alg 1) -
t%]js typef ! 2 z !
Eaérglg of 1 qlg+1) alg—1) -1
Rf (e, B) ala
a,B € Iie(Fy) | (¢ + 1)a(a)B(a) (a)(lg)([l;)(:) 0 (a)B(a)
o#
—RZ,(w)
w e ir(Fy) (g —1w(a) 0 —w(z) —w(fe) | ~wla)
w # w!
Ld(é fg(}?‘it) a(a?) a(ab) a(z.fz) a(a?)
St .(avo det) ga(a?) a(ab) —a(x.Fx) 0

a € Irr(Fy)
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Character table of SLy(IF,)

Table 2: characters of SLy(F,) for ¢ odd
(note that |SL, (F,)| = ¢(q — 1)(g + 1))

ORI NGRS (6 1)

0 Fz
Classes ae{l,-1} aeF; S Fr 1 ae{l,-1
arniy| wAT | VERTE

PR 2 3)/2 1)/2

ghz;-;s?;p% (¢-3)/ (¢-1)/ 4

Gardinal of 1 aa+1) | ale-1) (@ -1)/2

Ri(a) 1

aeln(Fy) |(¢+1)ala) |ala)+a(z) 0 ala)

a? #1d

Xog at la a ag(a @éﬂ(l_
Q{Ll} TD " P etanyaco

SR

w € Irr(ptg4) | (g — Dw(a) 0 —w(z) - w("z) ~w(a)

w?#£1d

. wo(a)

Xuo > lw a —w(x _2_(_1+
Q{l’ o [T " caar/a )

Tde 1 1 1 1

Sta q 1 -1 0
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Topological Mirror Test for n = 2

@ can calculate .
(M) = E(¥1) ~ (1) = E(X0) — E(M)/ (g 1) =
(22g _ 1)q2g—2 ((q— ) ;(q+ ) ) _

Zg 1(22g )(225 12) ng—3+2i
o M., can be identified with (C*)26~2 and the -equivariant
local system L, can be explicitly determined ~»
E(NM, T, Lg,) = (2 lattPe
o = E(Mg) = EB(Mg) when n = 2 due to certain patterns in
Irr(SLa(FFq)) [Schur, 1907] vs. Irr(GL2(Fg)) [Jordan, 1907]
@ similar argument works when n is a prime
o for general n one can determine E(M., /T, Lg )
using formulas of Laumon—Ng6 and Deligne
@ seems to check the Betti-TMS ~»
worl§ in progress with Yillegas and Mereb
o E(Ms;1/q) = q¥E(Ms; q) palindromic < Alvis-Curtis
duality in Irr(G(Fq))
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Hard Lefschetz for Weight and Perverse Filtrations

o Weight filtration: Wo C -+~ C W; C --- C Way = H¥(X)

o Alvis-Curtis duality in R(GL,(Fy))
~> Curious Hard Lefschetz Conjecture (theorem for PGL5):

L' Gry o (H™ (Mg)) i Gr iy o H'™ (M)
X — xUao

where a € WyH?(M3)

o Perverse filtration: Py C -+ C P; C ... P(X) = HX(X)
for f : X — Y proper X smooth Y affine
(de Cataldo-Migliorini, 2008):
take Yo C---CY;C...Yy=Y
s.t. Y; generic with dim(Y;) =/ then

Pi_i—1H*(X) = ker(H*(X) — HX(f71(Y})))
o the Relative Hard Lefschetz Theorem holds:
L Gr(’f_,(H*(X)) = Gr5+,H*+2’(X)

X — xUa!

i

where o € H?(X) is a relative ample class 5



P = W conjecture
A

o recall Hitchin map X Z\qu;; : charpol(¢)

thus induces perverse filtration on H*(Mp,)
Conjecture ("P=W", de Cataldo-Hausel-Migliorini 2008)

is proper,

Pr(Mpo1) = Waok(Mp) under the isomorphism
H*(Mpe1) = H*(Mp) from non-Abelian Hodge theory.

Theorem (de Cataldo-Hausel-Migliorini 2009)

P =W when G = GL2,PGL2 or SLQ.

Define PE(Mpol; X, ¥, q) := > q“E(Grf (H*(Mpa)); x, y)
PE(Mbpol; x,y,1) = E(Mpor; x, y) = E(Mpr; x, y)
Conjecture P = W = PE(Mp,;1,1,q) = E(Mp; q)

RHL ~» PE(Mpot; X, ¥, G) = (xyq)? PE(Mpoii X, ¥ 5) ~

Conjecture (Topological Mirror test, TMS)
PEE" (M (SLa)i x, v, 0)=(xyq)¢ PEE’ (M8, (PGLy); x, v, 2L,
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Conclusion

@ The TMS above unifies the previous Dol,DR,B-TMS
conjectures (Theorem when n = 2)

o Fibrewise Fourier-Mukai transform aka S-duality should
identify

S: Hg’S(MDol(SLn)) = H;:;Ki_p’s—i_d/z_p(MDOl(PGL,,))
this solves the mirror problem

(Theorem over regular locus of )

o (Ngd 2008) proves the fundamental lemma in the Langlands
program by proving " geometric stabilisation of the trace
formula” which for SL,, and PGL,, can be reformulated to
prove TMS over integral spectral curves, which when n is a
prime, can be extended to a proof of TMS everywhere.
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Some open questions

o Can fibrewise Fourier-Mukai Transform be extended to integral
spectral curves? For GL, the answer is yes by [Arinkin, 2010]

o for reduced, but non-reducible spectral curves? some relevant
work by Esteves, Lépez-Martin, ...

o for non-reduced spectral curves? some recent work by [Drezet,
2009]

@ Can the cohomology of the Hitchin fibers computed? for
integral (cf. [Ngd, 2008]) reduced but reducible (cf.
[Chaudouard-Laumon, 2009]) non-reduced spectral curves?

o Can Gross-Siebert’s approach to mirror symmetry (i.e.
degenerating the CY's to a reducible one) applied to Hitchin
systems? ~» Hitchin systems for singular curves? even only
for ordinary double points and for GL17?

o ramifications, other reductive groups?
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