Mirror symmetry, Langlands duality and the Hitchin system

Tamás Hausel

Royal Society URF at University of Oxford http://www.maths.ox.ac.uk/~hausel/talks.html

March 2010
Second International School on Geometry and Physics
Geometric Langlands and Gauge Theory
CRM Barcelona

Talk with same title in RIMS, Kyoto 6 September 2001

Mirror Symmetry

- phenomenon first arose in various forms in string theory
- mathematical predictions (Candelas-de la Ossa-Green-Parkes 1991)
- mathematically it relates the symplectic geometry of a Calabi-Yau manifold X^d to the complex geometry of its mirror Calabi-Yau Y^d
- first aspect is the topological mirror test $h^{p,q}(X) = h^{d-p,q}(Y)$
- compact hyperkähler manifolds satisfy $h^{p,q}(X) = h^{d-p,q}(X)$
- (Kontsevich 1994) suggests homological mirror symmetry $\mathcal{D}^b(Fuk(X,\omega)) \cong \mathcal{D}^b(Coh(Y,I))$
- (Strominger-Yau-Zaslow 1996) suggests a geometrical construction how to obtain *Y* from *X*
- many predictions of mirror symmetry have been confirmed no general understanding yet

Hodge diamonds of mirror Calabi-Yaus

Fermat quintic X

$$\hat{X} := X/(\mathbb{Z}_5)^3$$

K3 surface *X*1
0 0
1 20 1
0 0
1

Strominger-Yau-Zaslow

- X CY 3-fold
- Y mirror CY 3-fold
- B is 3-dimensional real manifold mostly S^3

- ullet π and $\hat{\pi}$ are special Lagrangian fibrations
- for generic $x \in B^3$ $L_x = \pi^{-1}(x) \cong T^3 \text{ and } \hat{L}_x = \hat{\pi}^{-1}(x) \cong T^3 \text{ are dual special Lagrangian tori}$
- generically Y^6 can be thought of as the moduli space of flat U(1) connections on a generic fiber L_x (a.k.a. *D-branes*)

Langlands duality

- the Langlands program aims to describe $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ via representation theory
- G reductive group, ^LG its Langlands dual
- e.g ${}^{L}GL_{n} = GL_{n}$; ${}^{L}SL_{n} = PGL_{n}$, ${}^{L}PGL_{n} = SL_{n}$
- [Langlands 1967] conjectures that $\{\text{homs } \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{G}(\mathbb{C})\} \leftrightarrow \{\text{automorphic reps of }^L\operatorname{G}(\mathcal{A}_{\mathbb{Q}})\}$
- $G = GL_1 \rightarrow$ class field theory $G = GL_2 \rightarrow$ Shimura-Taniyama-Weil
- function field version: replace \mathbb{Q} with $\mathbb{F}_q(X)$, where X/\mathbb{F}_q is algebraic curve
- [Ngô, 2008] proves fundamental lemma for $\mathbb{F}_q(X) \leadsto \mathsf{FL}$ for \mathbb{Q}
- geometric version: replace $\mathbb{F}_q(X)$ with $\mathbb{C}(X)$ for X/\mathbb{C}
- [Laumon 1987, Beilinson-Drinfeld 1995]
 Geometric Langlands conjecture
 {G-local systems on X} ↔ {Hecke eigensheaves on Bun_{LG}(X)}
- [Kapustin-Witten 2006] deduces this from reduction of S-duality (electro-magnetic duality) in N = 4 SUSY YM in 4d

Hitchin system

- Hamiltonian system: (X^{2d}, ω) symplectic manifold $H: X \to \mathbb{R}$ Hamiltonian function X_H Hamiltonian vector field $(dH = \omega(X_H, .))$
- $f: X \to \mathbb{R}$ is a first integral if $X_H f = \omega(X_f, X_H) = 0$
- the Hamiltonian system is *completely integrable* if there is $f = (H = f_1, \dots, f_d) : X \to \mathbb{R}^d$ generic such that $\omega(X_{f_i}, X_{f_i}) = 0$
- the generic fibre of f has an action of $\mathbb{R}^d = \langle X_{f_1}, \dots, X_{f_d} \rangle \rightsquigarrow$ when f is proper generic fibre is a torus $(S^1)^d$
- examples include: Euler and Kovalevskaya tops and the spherical pendulum
- algebraic version when replacing $\mathbb R$ by $\mathbb C \leadsto$ many examples can be formulated as a version of the *Hitchin system*
- a Hitchin system is associated to a complex curve C and a complex reductive group G
- it arose in the study [Hitchin 1987] of the 2-dimensional reduction of the Yang-Mills equations

Topological mirror tests

mirror tests:"

In these lectures we will discuss the mirror symmetry proposal of [Hausel–Thaddeus 2003]:
 "Hitchin systems for Langlands dual groups satisfy Strominger-Yau-Zaslow, so could be considered mirror symmetric; in particular they should satisfy the topological

Conjecture (Hausel-Thaddeus 2003, "Topological mirror test")

For all
$$d, e \in \mathbb{Z}$$
, satisfying $(d, n) = (e, n) = 1$, we have
$$E_{\mathrm{st}}^{B^e}\Big(\mathcal{M}_{\mathrm{DR}}^d(\mathrm{SL}_n); x, y\Big) = E_{\mathrm{st}}^{\hat{B}^d}\Big(\mathcal{M}_{\mathrm{DR}}^e(\mathrm{PGL}_n); x, y\Big).$$

The moduli space of vector bundles on a curve - GL_n

- ullet C smooth complex projective curve of genus g>1
- fix integers n > 0 and $d \in \mathbb{Z}$ always assume (d, n) = 1.
- $\mathcal{N}^d := \frac{\text{moduli space of isomorphism classes of}}{\text{semi-stable rank } n \text{ degree } d \text{ vector bundles on } C}$
- constructed using geometric invariant theory (GIT) or gauge theory
- vector bundle E is called semi-stable (stable) if every proper subbundle F satisfies

$$\mu(F) = \frac{\deg(F)}{\operatorname{rk}(F)} \stackrel{(<)}{\le} \mu(E) = \frac{\deg(E)}{\operatorname{rk}(E)}$$

• when (d, n) = 1 semi-stability \Leftrightarrow stability \rightsquigarrow \mathcal{N}^d is a non-singular projective fine moduli space

SL_n and PGL_n

$$\begin{array}{cccc} \operatorname{\mathsf{det}} : & \mathcal{N}^d & \to & \operatorname{\mathsf{Jac}}^d(\mathcal{C}) \\ & [E] & \mapsto & \Lambda^n(E) \end{array}$$

- fix $\Lambda \in \operatorname{Jac}^d(C)$ and let $\check{\mathcal{N}}^{\Lambda} := \det^{-1}(\Lambda) \subset \mathcal{N}^d$ the moduli space of (twisted) SL_n bundles on C
- $\check{\mathcal{N}}^{\Lambda}$ does not depend on the choice of $\Lambda \in \operatorname{Jac}^d(C)$ just write $\check{\mathcal{N}}^d := \check{\mathcal{N}}^{\Lambda}$
- when $(d, n) = 1 \rightsquigarrow \check{\mathcal{N}}^d$ is non-singular and projective
- $\operatorname{Pic}^0(C) = \operatorname{Jac}^0(C)$ acts on \mathcal{N}^d via $(L, E) \mapsto L \otimes E$. define

$$\hat{\mathcal{N}}^d := \mathcal{N}^d / \operatorname{Pic}^0(C)$$

the moduli space of degree $d \operatorname{PGL}_n$ bundles on C

• $\Gamma := \operatorname{Pic}^0(C)[n] \cong \mathbb{Z}_n^{2g} \subset \operatorname{Pic}^0(C)$ acts on $\hat{\mathcal{N}}^d$ and clearly $\hat{\mathcal{N}}^d = \check{\mathcal{N}}^d/\Gamma \leadsto \hat{\mathcal{N}}^d$ is a projective orbifold.

Cohomology of $\check{\mathcal{N}}$

- The cohomologies $H^*(\mathcal{N}^d)$, $H^*(\mathring{\mathcal{N}}^d)$ and $H^*(\hat{\mathcal{N}}^d)$ are well understood.
- [Harder–Narasimhan 1975] obtained recursive formulae for $\#\mathcal{N}(\mathbb{F}_q) \rightsquigarrow$ formula for Betti numbers via the Weil conjectures [Deligne 1974]
- [Atiyah–Bott 1981] gave different gauge-theoretic proof

Theorem (Harder–Narasimhan, 1975)

The finite group Γ acts trivially on $H^*(\mathring{\mathcal{N}}^d)$. In particular $H^*(\mathring{\mathcal{N}}^d) \cong H^*(\hat{\mathcal{N}}^d)$.

- ullet proof by showing $\# \check{\mathcal{N}}^d(\mathbb{F}_q) = \# \hat{\mathcal{N}}^d(\mathbb{F}_q)$
- [Hitchin, 1987] \Rightarrow false for moduli space of SL_2 Higgs bundles \rightsquigarrow non-triviality of our topological mirror tests

The Hitchin map - GL_n

- ullet $T^*\mathcal{N}$ is a (non-projective) algebraic symplectic variety
- ullet the ring $\mathbb{C}[T^*\mathcal{N}]$ is known to be finitely-generated
- the affinization of $T^*\mathcal{N}$ gives the GL_n Hitchin map.

$$\chi: T^*\mathcal{N} \to \mathcal{A} := \operatorname{Spec}(\mathbb{C}[T^*\mathcal{N}])$$

- deformation theory $\rightsquigarrow T_{[E]}\mathcal{N} = H^1(C, \operatorname{End}(E))$ Serre duality $\Rightarrow T_{[E]}^*\mathcal{N} = H^0(C, \operatorname{End}(E) \otimes K)$
- $\phi \in H^0(C, \operatorname{End}(E) \otimes K)$ is a Higgs field locally "a matrix of one-forms on the curve"
- let $(E, \phi) \in T^*\mathcal{N}$ its characteristic polynomial $\chi(\phi) = t^n + a_1 t^{n-1} + \cdots + a_n$ where $a_i \in H^0(K^n)$
- $\begin{array}{ccc} \chi: T^*\mathcal{N} & \to & \mathcal{A} := \bigoplus_{i=1}^n H^0(K^i) \\ (E, \phi) & \mapsto & (a_1, a_2, \dots, a_n) \end{array}$
- The affine space A is called the *Hitchin base*.

Hitchin map for SL_n and PGL_n

• for SL_n

$$T_{[E]}^* \check{\mathcal{N}}^d = H^0(\mathrm{End}_0(E) \otimes K)$$

that is, a covector at E is given by a trace free Higgs field.

• the SL_n *Hitchin base* is

$$\check{\mathcal{A}} = \mathcal{A}^0 := \bigoplus_{i=2}^n H^0(C, K^i).$$

• the SL_n Hitchin map

$$\check{\chi}: T^* \check{\mathcal{N}}^d \to \mathcal{A}^0.$$

- the action of $\Gamma = \operatorname{Pic}^0(C)[n]$ on $T^*\check{\mathcal{N}}$ is along the fibers of $\check{\chi}$ $\Rightarrow \check{\chi}$ descends to the quotient
- the PGL_n Hitchin map:

$$\hat{\chi}: (T^*\check{\mathcal{N}})/\Gamma \to \hat{\mathcal{A}} = \mathcal{A}^0.$$

The Hitchin map is an integrable system

- ullet recall that $T^*\mathcal{N}$ is an algebraic symplectic variety
- with canonical Liouville symplectic structure
- \bullet as the Hitchin map only depends on the cotangent direction \leadsto

Theorem (Hitchin, 1987)

- $\omega(X_{\chi_i}, X_{\chi_j}) = 0$ for any two $\chi_i, \chi_j \in \mathbb{C}[T^*\mathcal{N}]$ coordinate functions.
- $\dim(\mathcal{A}) = \dim(\mathcal{N}) = \dim(\mathcal{T}^*\mathcal{N})/2$
- ullet generic fibres of χ are open subsets of abelian varieties
- $\sim \chi$ is an algebraically completely integrable Hamiltonian system.
 - Need to projectivize χ to complete the generic fibres to abelian varieties (compact tori)

Proper Hitchin map

- $(E, \phi) \in T^*\mathcal{N} \leadsto E$ is stable; to projectivize χ we need to allow E to become unstable.
- A Higgs bundle is a pair (E, ϕ) where E is a vector bundle on C and $\phi \in H^0(C, \operatorname{End}(E) \otimes K)$ is a Higgs field.
- a Higgs bundle (E,ϕ) is *(semi-)stable* if for every ϕ -invariant proper subbundle E we have $\mu(F) \stackrel{(\leq)}{<} \mu(E)$
- \mathcal{M}^d the moduli space of (semi-)stable Higgs bundles, a non-singular quasi-projective and symplectic variety, containing $T^*\mathcal{N} \subset \mathcal{M}^d$ as an open dense subvariety
- ullet extend $\chi:\mathcal{M}^d o\mathcal{A}$ in the obvious way

Theorem (Hitchin 1987, Nitsure 1991, Faltings 1993)

 χ is a proper algebraically completely integrable Hamiltonian system. Its generic fibres are abelian varieties.

• as
$$\operatorname{codim}(\mathcal{M}^d \setminus T^*\mathcal{N}^d) \geq 2 \overset{Hartogs}{\Rightarrow} \mathbb{C}[\mathcal{M}^d] \cong \mathbb{C}[T^*\mathcal{N}^d] \Rightarrow$$

by the Theorem
 $\mathcal{A} \cong \operatorname{Spec}(\mathbb{C}[\mathcal{M}^d]) \cong \operatorname{Spec}(\mathbb{C}[T^*\mathcal{N}^d])$

SL_n Hitchin system

- fix $\Lambda \in \operatorname{Jac}^d(C)$
- E vector bundle on C with determinant Λ
- $\phi \in H^0(\operatorname{End}_0(E) \otimes K)$ is trace-free Higgs field
- then (E, ϕ) is an SL_n -Higgs bundle
- $\check{\mathcal{M}}^{\Lambda} \subset \mathcal{M}^d$ moduli space of (semi-)stable SL_n -Higgs bundles
- $\check{\mathcal{M}}^{\Lambda}$ is independent of Λ denote $\check{\mathcal{M}}^d := \check{\mathcal{M}}^{\Lambda}$
- ullet $\check{\mathcal{M}}^d$ is a non-singular quasi-projective and symplectic variety
- ullet characteristic polynomial of ϕ gives SL_n -Hitchin system

$$\check{\chi}: \check{\mathcal{M}}^d \to \mathcal{A}^0:= \oplus_{i=2}^n H^0(C; K^i)$$

ullet $\check{\chi}$ is proper and a completely integrable system

PGL_n Hitchin system over the same Hitchin base

- $T^* \operatorname{Pic}^0(C) = \operatorname{Pic}^0(C) \times H^0(C, K)$ is a group; it acts on \mathcal{M}^d by $(L, \varphi)(E, \phi) \mapsto (L \otimes E, \varphi + \phi)$
- \sim action of $\Gamma = \operatorname{Pic}^0[n]$ on $\check{\mathcal{M}}^d$
- $\hat{\mathcal{M}}^d = \mathcal{M}^d/T^*\operatorname{Pic}^0(\mathcal{C}) \cong \chi^{-1}(\mathcal{A}^0)/\operatorname{Pic}^0(\mathcal{C}) \cong \check{\mathcal{M}}/\Gamma$
- ullet $\hat{\mathcal{M}}^d$, the PGL_n Higgs moduli space, is an orbifold
- the Γ action is along the fibers of $\check{\chi} \leadsto \mathrm{PGL}_n$ Hitchin map

$$\hat{\chi}:~\hat{\mathcal{M}}^{\textit{d}}=\check{\mathcal{M}}^{\textit{d}}/\Gamma\to\mathcal{A}^{0}$$

- will show generic fibers are dual Abelian varieties;
 which are complex Lagrangian due to integrable system
- changing complex structure will lead to special Lagrangian fibrations; and so to SYZ

Spectral curves

• let (E, ϕ) be a Higgs bundle such that $\chi(\phi) = a \in \mathcal{A}$ has the form

$$a=t^n+a_1t^{n-1}+\cdots+a_n,$$

where $a_i \in H^0(K^i)$.

- What should be the spectrum of the Higgs field ϕ ?
- at $p \in C$ the Higgs field $\phi_p : E_p \to E_p \otimes K_p$
- eigenvalue ν_p of ϕ_p satisfies $\exists v \in E_p 0 : \Phi_p(v) = \nu_p v. \rightsquigarrow$ must have $\nu_p \in K_p$
- let X denote the total space of K then $C_a := \bigcup_{p \in C} \nu_p^i \subset X$, the set of all eigenvalues of the Higgs field \rightsquigarrow spectral curve
- scheme structure on C_a?
- tautological section $\lambda \in H^0(X, \pi^*K)$ satisfying $\lambda(x) = x$
- $s_a := \lambda^n + a_1 \lambda^{n-1} + \dots + a_n \in H^0(X, \pi^* K^n)$
- $C_a := s_a^{-1}(0) \subset X$ spectral curve $\pi_a : C_a \to C$ spectral cover of degree n

Generic fibres of the Hitchin map

- assume C_a is smooth $\Leftrightarrow a \in \mathcal{A}_{reg}$; $(E, \phi) \in \chi^{-1}(a) =: \mathcal{M}_a$
- if $\nu_p \in C_a \subset X$ then $L_{\nu_p} \subset \pi_a^*(E)$ ν_p -eigenspace in $E_p \rightsquigarrow L := \ker(\lambda Id_E \pi_a^*(\phi)) \subset \pi_a^*(E)$ subsheaf rank $1 \rightsquigarrow$ invertible as C_a is smooth such that $\pi_*(L(\Delta)) = E$ (eigenspace decomposition of ϕ)
- starting with a line bundle $M \in \operatorname{Jac}^d(C_a)$ we construct $E = \pi_*(M)$ rank n degree d' = d n(n-1)(g-1) torsion free \sim locally free and Higgs field $\phi := \pi_*(\lambda) : \pi_*(M) \to \pi_*(M) \otimes K$ pushing forward the tautological map $\lambda : M \to M \otimes \pi^*(K)$
- by definition λ solves the characteristic polynomial a on $C_a \rightsquigarrow$ so will $\phi \rightsquigarrow$ by Cayley-Hamilton $\chi(\phi) = a$
- the spectral curve of a proper Higgs subbundle of $(E, \phi) = (\pi_*(M), \pi_*(\lambda))$ would be a 1-dimensional proper subscheme of $C_a \Rightarrow (E, \phi)$ is stable

Theorem (Hitchin 1987, Beauville-Narasimhan-Ramanan 1989)

For $a \in A_{reg}$ we have $\mathcal{M}_a^{d'} \cong Jac^d$.

Generic fibers for SL_n and PGL_n -Hitchin map

- recall (E, ϕ) SL_n -Higgs bundle if $tr(\phi) = 0$ and $det(E) = \Lambda \in Jac^{d'}(C)$
- define $\operatorname{Prym}^d(C) \subset \operatorname{Jac}^d(C_a)$ by

$$L \in \mathsf{Prym}^d(C_a) \Leftrightarrow \det \pi_*(L) = \Lambda$$

• if $a \in \mathcal{A}_{reg}^0$ the SL_n -Hitchin fibre satisfies

$$\check{\mathcal{M}}_a := \check{\chi}^{-1}(a) \cong \mathsf{Prym}^d(\mathcal{C}_a).$$

- for PGL_n we have $\hat{\mathcal{M}}_a := \hat{\chi}^{-1}(a) \cong \check{\mathcal{M}}_a/\Gamma \cong \operatorname{Prym}^d(\mathcal{C}_a)/\Gamma$ makes sense since for $L_\gamma \in \operatorname{Pic}(\mathcal{C})[n]$ we have $\det(\pi_*(\pi^*(L_\gamma) \otimes L)) = \det(L_\gamma \otimes \pi_*(L)) = L_\gamma^n \otimes \det(\pi_*L) = \det(\pi_*L).$
- alternatively $\hat{\mathcal{M}}_a = \mathcal{M}_a / \operatorname{Pic}^0(C) \cong \operatorname{Jac}^d(C_a) / \operatorname{Pic}^0(C)$
- where $\operatorname{Pic}^0(C)$ acts on $\operatorname{Jac}^d(C_a)$ via the homomorphism $\pi_a^*:\operatorname{Pic}^0(C)\to\operatorname{Pic}^0(C_a)$

Symmetries of the GL_n and PGL_n Hitchin fibration

- for GL_n : fix $a \in \mathcal{A}_{reg}$
- tensor product gives a simply transitive action of $\operatorname{Pic}^0(C_a)$ on $\operatorname{Jac}^d(C_a)$
- $\sim \mathcal{M}_a$ is a torsor for $P_a := \operatorname{Pic}^0(C_a)$
- for PGL_n : fix $a \in \mathcal{A}_{reg}^0$

$$\hat{\mathcal{M}}_a = \mathcal{M}_a / \operatorname{Pic}^0(C)$$

is a torsor for the quotient $\hat{P}_a := P_a / \operatorname{Pic}^0(C)$ abelian variety

Symmetries of the SL_n Hitchin fibration

- recall the spectral cover map $\pi: C_a \to C$
- for an abelian variety A the dual $\hat{A} := Pic^0(A)$

Definition

For $a \in \mathcal{A}^0_{reg}$ the norm map $Nm_{C_a/C} : Pic^0(C_a) \to Pic^0(C)$ is defined in any of the following three equivalent ways:

- ① D divisor on C_a , $Nm_{C_a/C}(\mathcal{O}(D)) = \mathcal{O}(\pi_*D)$
- ② For $L \in \text{Pic}^0(C_a)$ define $Nm_{C_a/C}(L) = det(\pi_*(L)) \otimes det^{-1}(\pi_*\mathcal{O}_{C_a}).$
- **3** the norm map is the dual of the pull-back map $\pi_a^* : \operatorname{Pic}^0(C) \to \operatorname{Pic}^0(C_a)$, that is $\operatorname{Nm}_{C_a/C} = \check{\pi} : \operatorname{Pic}^0(C_a) \cong \operatorname{Pic}^0(C_a) \to \operatorname{Pic}^0(C) \simeq \operatorname{Pic}^0(C)$.
 - the Prym variety $\operatorname{Prym}^0(C_a) := \ker(Nm_{C_a/C})$ acts on $\operatorname{Prym}^d(C_a) = \check{\mathcal{M}}_a \leadsto \check{\mathcal{M}}_a$ is a torsor for $\check{P}_a := \operatorname{Prym}^0(C_a)$.
 - for PGL_n : $\hat{\mathcal{M}}_a$ is a torsor for $\hat{P}_a = \operatorname{Pic}^0(C_a)/\operatorname{Pic}^0(C) \cong \operatorname{Prym}^0(C_a)/\Gamma \cong \check{P}_a/\Gamma$

Duality of the Hitchin fibres

short exact sequence of abelian varieties:

$$0 \rightarrow \operatorname{Prym}^{0}(C_{a}) \hookrightarrow \operatorname{Pic}^{0}(C_{a}) \stackrel{Nm_{C_{a}/C}}{\twoheadrightarrow} \operatorname{Pic}(C) \rightarrow 0$$

• the dual sequence is

$$0 \leftarrow Prym^{0}(C_{a}) \leftarrow Pic^{0}(C_{a}) \stackrel{\pi^{*}}{\leftarrow} Pic(C) \leftarrow 0 ,$$

• $\rightsquigarrow \check{P}_a = \operatorname{Pic}^0(C_a)/\operatorname{Pic}(C) = \hat{P}_a, \Rightarrow \check{P}_a$ and \hat{P}_a are dual abelian varieties

Theorem (Hausel-Thaddeus, 2003)

For a regular $a \in \mathcal{A}_{reg}^0 \, \check{\mathcal{M}}_a$ and $\hat{\mathcal{M}}_a$ are torsors for dual Abelian varieties (namely \check{P}_a and \hat{P}_a).

Strominger-Yau-Zaslow for $\check{\mathcal{M}}_{\mathrm{DR}}$ and $\hat{\mathcal{M}}_{\mathrm{DR}}$

- generic fibers are torsors for dual Abelian varieties
- as $\check{\chi}$ and $\hat{\chi}$ are integrable systems \Rightarrow the fibers are complex Lagrangian (i.e. $\omega^c = \omega_J + i\omega_K$ is zero on the fibers)
- [Hitchin, 1987] shows that $\check{\mathcal{M}}$ is hyperkähler and $(\check{\mathcal{M}},J)$ is the moduli space $\check{\mathcal{M}}_{\mathrm{DR}}$ of (twisted) flat SL_n -connections on C

- the fibers of $\check{\chi}$ on $\check{\mathcal{M}}_{\mathrm{DR}}$ now are special Lagrangian because both ω_J and $\mathrm{Im}((\omega_K+i\omega_I)^{2d})$ restrict to zero on the fibers
- Strominger-Yau-Zaslow is satisfied for $\check{\mathcal{M}}_{DR}$ and $\hat{\mathcal{M}}_{DR}!$

E-polynomials

- (Deligne 1972) constructs weight filtration $W_0 \subset \cdots \subset W_k \subset \cdots \subset W_{2d} = H_c^d(X;\mathbb{Q})$ for any complex algebraic variety X, plus a pure Hodge structure on W_k/W_{k-1} of weight k
- we say that the weight filtration is *pure* when $W_k/W_{k-1}(H_c^i(X)) \neq 0 \Rightarrow k = i$; examples include smooth projective varieties, $\hat{\mathcal{M}}^d$ and $\hat{\mathcal{M}}_{\mathrm{DR}}^d$
- define $E(X; x, y) := \sum_{i,j,d} (-1)^d x^i y^j h^{i,j} (W_k / W_{k-1}(H_c^d(X, \mathbb{C})))$
- basic properties: additive if $X_i \subset X$ locally closed s.t. $\dot{\cup} X_i = X$ then $E(X;x,y) = \sum E(X_i;x,y)$ multiplicative $F \to E \to B$ locally trivial in the Zariski topology E(E;x,y) = E(B;x,y)E(F;x,y)
- when weight filtration is pure then $E(X; -x, -y) = \sum_{p,q} h^{p,q} (H_c^{p+q}(X)) x^p y^q$ is the Hodge E(X; t, t) is the Poincaré polynomial

Stringy E-polynomials

- ullet let finite group Γ act on a non-singular complex variety M
- $E_{st}(M/\Gamma; x, y) := \sum_{[\gamma] \in [\Gamma]} E(M_{\gamma}/C(\gamma); x, y)(xy)^{F(\gamma)}$ stringy E-polynomial
- $F(\gamma)$ is the fermionic shift, defined as $F(\gamma) = \sum w_i$, where γ acts on $TX|_{X_{\gamma}}$ with eigenvalues $e^{2\pi i w_i}$, $w_i \in [0,1)$
- $F(\gamma)$ is an integer when M is CY and Γ acts trivially on K_M
- motivating property [Kontsevich 1995] if $f: X \to M/\Gamma$ crepant resolution $\Leftrightarrow K_X = f^*K_{M/\Gamma}$ then $E(X; x, y) = E_{st}(M/\Gamma; x, y)$
- if B is a Γ -equivariant flat U(1)-gerbe on M, then on each \mathcal{M}_{γ} we get an automorphism of $B|_{\mathcal{M}_{\gamma}} \leadsto C(\gamma)$ -equivariant local system $L_{B,\gamma}$
- we can define $E_{st}^B(M/\Gamma; x, y) := \sum_{[\gamma] \in [\Gamma]} E(M_\gamma, L_{B,\gamma}; x, y)^{C(\gamma)} (xy)^{F(\gamma)}$ stringy E-polynomial twisted by a gerbe

Topological mirror symmetry conjecture - unravelled

Conjecture (Hausel–Thaddeus, 2003)

$$(d,n)=(e,n)=1; \hat{B}$$
 the canonical Γ -equivariant gerbe on $\check{\mathcal{M}}_{\mathrm{DR}}^e$ $E(\check{\mathcal{M}}_{\mathrm{DR}}^d)=E_{st}^{\hat{B}^e}(\hat{\mathcal{M}}_{\mathrm{DR}}^e) \quad \Leftrightarrow \quad E(\check{\mathcal{M}}^d)=E_{st}^{\hat{B}^e}(\hat{\mathcal{M}}^e)$

- Theorem for n = 2, 3 using [Hitchin 1987] and [Gothen 1994].
- as Γ acts on $H^*(\check{\mathcal{M}}^d)$ we have \rightsquigarrow $H^*(\check{\mathcal{M}}^d) \cong \bigoplus_{\kappa \in \widehat{\Gamma}} H^*_{\kappa}(\check{\mathcal{M}}^d) \rightsquigarrow$

$$E(\check{\mathcal{M}}^d) = \sum_{\kappa \in \hat{\Gamma}} E_{\kappa}(\check{\mathcal{M}}^d) = E_0(\check{\mathcal{M}}^d) + \sum_{\kappa \in \hat{\Gamma}^*} E_{\kappa}(\check{\mathcal{M}}^d)$$

$$E_{st}^{B^d}(\hat{\mathcal{M}}^e) = \sum_{\gamma \in \Gamma} E(\check{\mathcal{M}}_{\gamma}^e, L_{B,\gamma})^{\Gamma} = E(\check{\mathcal{M}}^d)^{\Gamma} + \underbrace{\sum_{\gamma \in \Gamma^*} E(\check{\mathcal{M}}_{\gamma}^d/\Gamma, L_{B^d,\gamma})}_{}$$

- $\Gamma \cong H^1(C,\mathbb{Z}_n)$ and wedge product induces $w:\Gamma \cong \hat{\Gamma}$
- refined Topological Mirror Test for $w(\gamma) = \kappa$: $E_{\kappa}(\check{\mathcal{M}}^d) = E(\check{\mathcal{M}}^d_{\gamma}/\Gamma, L_{B,\gamma})(xy)^{F(\gamma)}$

stringy

Example SL₂

- fix n = 2 d = 1
- ullet $\mathbb{T}:=\mathbb{C}^{ imes}$ acts on $\check{\mathcal{M}}$ by $\lambda\cdot(E,\phi)\mapsto(E,\lambda\cdot\phi))\stackrel{\mathit{Morse}}{\leadsto}$

$$H^*(\check{\mathcal{M}}) = \bigoplus_{F_i \subset \check{\mathcal{M}}^{\mathbb{T}}} H^{*+\mu_i}(F_i)$$
 as Γ-modules

- $F_0 = \check{\mathcal{N}}$ where $\phi = 0$; then [Harder–Narasimhan 1975] \Rightarrow $H^*(F_0)$ is trivial Γ -module
- for i = 1, ..., g 1

$$F_i = \{ (E, \phi) \mid E \cong L_1 \oplus L_2, \phi = \begin{pmatrix} 0 & 0 \\ \varphi & 0 \end{pmatrix}, \varphi \in H^0(L_1^{-1}L_2K) \}$$

 \sim $F_i \rightarrow S^{2g-2i-1}(C)$ Galois cover with Galois group Γ

Theorem (Hitchin 1987)

The Γ action on $H^*(F_i)$ is only non-trivial in the middle degree 2g-2i-1. For $\kappa\in\hat{\Gamma}^*$ we have

$$\dim H^{2g-2i-1}_{\kappa}(F_i)=\binom{2g-2}{2g-2i-1}.$$

Example PGL₂

• $\gamma \in \Gamma = \operatorname{Pic}^0(C)[2] \leadsto C_{\gamma} \stackrel{2:1}{\longrightarrow} C$ with Galois group \mathbb{Z}_2

$$\mathcal{M}(\mathrm{GL}_1, C_\gamma) \cong T^* \operatorname{\mathsf{Jac}}^d(C_\gamma) \stackrel{\mathsf{push-forward}}{\longrightarrow} \mathcal{M}^d \supset \check{\mathcal{M}}^d$$
 $\parallel \qquad \qquad \downarrow \det$
 $T^* \operatorname{\mathsf{Jac}}^d(C_\gamma) \stackrel{\mathsf{N}_m(C_\gamma/C)}{\longrightarrow} T^* \operatorname{\mathsf{Jac}}^d(C) \ni (\Lambda, 0)$

- let $\check{\mathcal{M}}(GL_1, C_{\gamma}) := N_m(C_{\gamma}/C)^{-1}(\Lambda, 0)$ endoscopic H_{γ} -Higgs moduli space
- after [Narasimhan–Ramanan, 1975] $\check{\mathcal{M}}_{\gamma} = \check{\mathcal{M}}(\mathit{GL}_1, \mathit{C}_{\gamma})/\mathbb{Z}_2 \cong \mathit{T}^*\operatorname{Prym}^d(\mathit{C}_{\gamma}/\mathit{C})$
- can calculate dim $H^{2g-2i+1}(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{\hat{B},\gamma})=\binom{2g-2}{2g-2i-1}$ and 0 otherwise

Theorem (Hausel-Thaddeus, 2003)

when
$$n = 2$$
 and $\kappa = w(\gamma)$
 $E_{\kappa}(\check{\mathcal{M}}; u, v) = E(\check{\mathcal{M}}_{\gamma}/\Gamma; L_{B,\gamma}, u, v)(uv)^{F(\gamma)}$

Character varieties

- the GL_n -character variety:
- $\mathcal{M}_{B}^{d} := \{(A_{i}, B_{i})_{i=1..g} \in \operatorname{GL}_{n}^{2g} \mid [A_{1}, B_{1}] \dots [A_{g}, B_{g}] = \zeta_{n}^{d} I_{n}\} // PGL_{n}$ non-singular, affine
 - the SL_n -character variety:
- $\check{\mathcal{M}}_{B}^{d} := \{(A_i, B_i)_{i=1..g} \in \mathrm{SL}_n^{2g} \mid [A_1, B_1] \dots [A_g, B_g] = \zeta_n^d I_n\} // \mathrm{PGL}_n$ non-singular, affine
 - for PGL_n note that $(\mathbb{C}^\times)^{2g}$ acts on \mathcal{M}_B^d and $\Gamma \cong (\mathbb{Z}_n)^{2g} \subset (\mathbb{C}^\times)^{2g}$ acts on $\check{\mathcal{M}}^d$ $\hat{\mathcal{M}}_B^d := \check{\mathcal{M}}_B^d/\Gamma \cong \mathcal{M}_B^d/(\mathbb{C}^\times)^{2g}$ is an affine orbifold

Theorem (Non-Abelian Hodge Theorem; Simpson, Corlette)

$$\hat{\mathcal{M}}_{\mathrm{Del}}^{d} \overset{\textit{diff}}{\cong} \hat{\mathcal{M}}_{\mathrm{DR}} \overset{\textit{RH}}{\cong} \hat{\mathcal{M}}_{\mathrm{B}}$$

ullet RH is complex analytic \cong ; so SYZ satisfied by $\check{\mathcal{M}}^d_{\mathrm{B}}$ and $\hat{\mathcal{M}}^d_{\mathrm{B}}$

Conjecture (Hausel-Villegas, 2004)

$$(d,n) = (e,n) = 1$$
 $E(\check{\mathcal{M}}_{B}^{d}; u, v) = E_{st}^{\hat{B}^{d}}(\mathcal{M}_{B}^{e}; u, v)$

Arithmetic technique to calculate *E*-polynomials

- *E*-polynomial of a complex variety X: $E(X; u, v) = \sum_{i,p,q} (-1)^i h^{p,q} (Gr_k^W H_c^i(X)) u^p v^q$ where $W_0 \subseteq W_1 \subseteq \ldots \subseteq W_i \subseteq \ldots \subseteq W_{2k} = H_c^k(X)$ is the weight filtration.
- $\check{\mathcal{M}}_B$ have a Hodge-Tate type MHS i.e. $h^{p,q} \neq 0$ unless p = q $E(X; u, v) = E(X, uv) := \sum_{i,k} (-1)^i \dim(Gr_k^W H_c^i(X)) (uv)^k$, but the MHS is not pure, i.e $k \neq i$ when $h^{(k/2,k/2)} \neq 0$.
- X/\mathbb{Z} has polynomial-count, if $E(q) = |X(\mathbb{F}_q)| \in \mathbb{Q}[q]$ is polynomial in q.

Theorem (Katz, 2006)

When X/\mathbb{Z} has polynomial-count $E(X/\mathbb{C},q)=|X(\mathbb{F}_q)|$

- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ over \mathbb{Z} as the subscheme $\{xy = 1\}$ of \mathbb{A}^2 . Then $E(\mathbb{C}^*;q) = |(\mathbb{F}_q^*)| = q-1$
- since $H_c^2(\mathbb{C}^*)$ has weight q and $H_c^1(\mathbb{C}^*)$ has weight $1 \rightsquigarrow$ checks with Katz

Arithmetic harmonic analysis on $\mathcal{M}_{\scriptscriptstyle\mathrm{B}}$

• for any finite group G, [Frobenius 1896], ..., TQFT [Freed–Quinn 1993] \rightsquigarrow $\left|\left\{a_1,b_1,\ldots,a_g,b_g\in G|\prod[a_i,b_i]=z\right\}\right|=\sum_{\chi\in Irr(G)}\frac{|G|^{2g-1}}{\chi(1)^{2g-1}}\chi(z)$

ullet when $\zeta_n\in\mathbb{F}_q^*$, i.e n|q-1, we get

$$E(\mathcal{M}_{\mathrm{B}};q) \overset{\mathit{Katz}}{=} |\mathcal{M}_{\mathrm{B}}^{d}(\mathbb{F}_{q})| = (q-1) \sum_{\chi \in \mathit{Irr}(\mathrm{GL}_{n}(\mathbb{F}_{q}))} \frac{|\mathrm{GL}_{n}(\mathbb{F}_{q})|^{2g-2}}{\chi(1)^{2g-2}} \cdot \frac{\chi(\zeta_{n}^{d} \cdot I)}{\chi(1)}$$

$$\mathit{Irr}(\mathrm{GL}_{n}(\mathbb{F}_{q})) \text{ described combinatorially by [Green, 1955]} \rightsquigarrow$$

formula for $E(\mathcal{M}_{\mathrm{B}};q)$ [Hausel–Villegas, 2008]

$$\begin{array}{l} \bullet \text{ when } n|q-1 \\ E(\check{\mathcal{M}}_{\mathrm{B}};q) \stackrel{\mathsf{Katz}}{=} |\check{\mathcal{M}}_{\mathrm{B}}^d(\mathbb{F}_q)| = \sum_{\{I \in \mathcal{SL}(\mathbb{F}_q)\}} \frac{|\mathrm{SL}_n(\mathbb{F}_q)|^{2g-2}}{\chi(1)^{2g-2}} \cdot \frac{\chi(\zeta_n^d \cdot I)}{\chi(1)} \end{array}$$

 $\chi \in Irr(\operatorname{SL}_n(\mathbb{F}_q))$ $\chi(-)$ χ

Character table of $\mathrm{GL}_2(\mathbb{F}_q)$

Table 1: characters of $\operatorname{GL}_2(\mathbb{F}_q)$ (note that $|\operatorname{GL}_2(\mathbb{F}_q)| = q(q-1)^2(q+1)$)

Classes	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ $a \in \mathbb{F}_q^{\times}$	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ $a, b \in \mathbb{F}_q^{\times}$ $a \neq b$	$\begin{pmatrix} x & 0 \\ 0 & {}^{F}x \end{pmatrix}$ $x \in \mathbb{F}_{q^{2}}^{\times}$ $x \neq {}^{F}x$	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$ $a \in \mathbb{F}_q^{\times}$
Number of classes of this type	q-1	$\frac{(q-1)(q-2)}{2}$	$\frac{q(q-1)}{2}$	q-1
Cardinal of the class	1	q(q+1)	q(q-1)	$q^{2}-1$
$\begin{array}{l} \overline{R_{\mathbf{T}}^{\mathbf{G}}(\alpha,\beta)} \\ \alpha,\beta \in \mathrm{Irr}(\mathbb{F}_q^{\times}) \\ \alpha \neq \beta \end{array}$	$(q+1)\alpha(a)\beta(a)$	$\alpha(a)\beta(b)+ \\ \alpha(b)\beta(a)$	0	$\alpha(a)\beta(a)$
$ \begin{array}{l} -R_{\mathbf{T}_s}^{\mathbf{G}}(\omega) \\ \omega \in \operatorname{Irr}(\mathbb{F}_{q^2}^{\times}) \\ \omega \neq \omega^q \end{array} $	$(q-1)\omega(a)$	0	$-\omega(x) - \omega({}^{F}x)$	$-\omega(a)$
$\mathrm{Id}_{\mathbf{G}}.(\alpha\circ\det)$ $\alpha\in\mathrm{Irr}(\mathbb{F}_q^\times)$	$lpha(a^2)$	$\alpha(ab)$	$\alpha(x.^Fx)$	$\alpha(a^2)$
$\begin{array}{l} \operatorname{St}_{\mathbf{G}}.(\alpha \circ \operatorname{det}) \\ \alpha \in \operatorname{Irr}(\mathbb{F}_q^{\times}) \end{array}$	$q\alpha(a^2)$	$\alpha(ab)$	$-\alpha(x.^Fx)$	0

Character table of $\mathrm{SL}_2(\mathbb{F}_q)$

Table 2: characters of $\mathbf{SL}_2(\mathbb{F}_q)$ for q odd (note that $|\mathbf{SL}_2(\mathbb{F}_q)|=q(q-1)(q+1))$

Classes	$\begin{vmatrix} a & 0 \\ 0 & a \end{vmatrix}$ $a \in \{1, -1\}$	$\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ $a \in \mathbb{F}_q^{\times}$ $a \neq \{1, -1\}$	$\begin{pmatrix} x & 0 \\ 0 & {}^Fx \end{pmatrix}$ $x.{}^Fx = 1$ $x \neq {}^Fx$	$ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} $ $ a \in \{1, -1\}, $ $ b \in \{1, x\} \text{ with } $ $ x \in \mathbb{F}_q^{\times} - (\mathbb{F}_q^{\times})^2 $
Number of classes of this type	2	(q-3)/2	(q-1)/2	4
Cardinal of the class	1	q(q+1)	q(q-1)	$(q^2 - 1)/2$
$R_{\mathbf{T}}^{\mathbf{G}}(\alpha)$ $\alpha \in \operatorname{Irr}(\mathbb{F}_q^{\times})$ $\alpha^2 \neq \operatorname{Id}$	$(q+1)\alpha(a)$	$\alpha(a) + \alpha(\frac{1}{a})$	0	$\alpha(a)$
$\chi_{\alpha_0}^{\varepsilon}$ $\varepsilon \in \{1, -1\}$	$\frac{q+1}{2}\alpha_0(a)$	$\alpha_0(a)$	0	$\frac{\alpha_0(a)}{2}(1-\\ \varepsilon\alpha_0(ab)\sqrt{\alpha_0(-1)q})$
$-R_{\mathbf{T}_s}^{\mathbf{G}}(\omega)$ $\omega \in \operatorname{Irr}(\mu_{q+1})$ $\omega^2 \neq \operatorname{Id}$	$(q-1)\omega(a)$	0	$-\omega(x) - \omega({}^{F}x)$	$-\omega(a)$
$\varepsilon \in \{1, -1\}$	$\frac{q-1}{2}\omega_0(a)$	0	$-\omega_0(x)$	$\frac{\omega_0(a)}{2}(-1+\\\varepsilon\alpha_0(ab)\sqrt{\alpha_0(-1)q})$
$\mathrm{Id}_{\mathbf{G}}$	1	1	1	1
$\operatorname{St}_{\mathbf{G}}$	q	1	-1	0

Topological Mirror Test for n = 2

can calculate

$$E_{var}(\check{\mathcal{M}}) = E(\check{\mathcal{M}}) - E(\hat{\mathcal{M}}) = E(\check{\mathcal{M}}) - E(\mathcal{M})/(q-1)^{2g} = (2^{2g}-1)q^{2g-2}\left(\frac{(q-1)^{2g-2}-(q+1)^{2g-2}}{2}\right) = \sum_{i=1}^{g-1} (2^{2g}-1)\binom{2g-2}{2i-1}q^{2g-3+2i}$$

- $\check{\mathcal{M}}_{\gamma}$ can be identified with $(\mathbb{C}^{\times})^{2g-2}$ and the Γ -equivariant local system $L_{\beta,\gamma}$ can be explicitly determined \leadsto $E(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma}) = \frac{(q-1)^{2g-2}-(q+1)^{2g-2}}{2}$
- $\Rightarrow E(\mathring{\mathcal{M}}_{\mathrm{B}}) = E_{st}^B(\mathring{\mathcal{M}}_{\mathrm{B}})$ when n=2 due to certain patterns in $Irr(\mathrm{SL}_2(\mathbb{F}_q))$ [Schur, 1907] vs. $Irr(\mathrm{GL}_2(\mathbb{F}_q))$ [Jordan, 1907]
- similar argument works when n is a prime
- for general n one can determine $E(\mathring{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma})$ using formulas of Laumon–Ngô and Deligne
- seems to check the Betti-TMS

 →
 work in progress with Villegas and Mereb
- $E(\mathring{\mathcal{M}}_{\mathrm{B}}; 1/q) = q^d E(\mathring{\mathcal{M}}_{\mathrm{B}}; q)$ palindromic \Leftarrow Alvis-Curtis duality in $Irr(G(\mathbb{F}_q))$

Hard Lefschetz for Weight and Perverse Filtrations

- Weight filtration: $W_0 \subset \cdots \subset W_i \subset \cdots \subset W_{2k} = H^k(X)$
- Alvis-Curtis duality in $R(GL_n(\mathbb{F}_q))$ \sim Curious Hard Lefschetz Conjecture (theorem for PGL_2):

 \sim Curious Hard Letschetz Conjecture (theorem for PGL_2):

$$L^{l}: Gr_{d-2l}^{W}(H^{i-l}(\mathcal{M}_{\mathrm{B}})) \stackrel{\cong}{\to} Gr_{d+2l}^{W}H^{i+l}(\mathcal{M}_{\mathrm{B}}),$$

$$x \mapsto x \cup \alpha^{l},$$
where $\alpha \in W_{4}H^{2}(\mathcal{M}_{\mathrm{B}})$

• Perverse filtration: $P_0 \subset \cdots \subset P_i \subset \ldots P_k(X) \cong H^k(X)$ for $f: X \to Y$ proper X smooth Y affine (de Cataldo-Migliorini, 2008): take $Y_0 \subset \cdots \subset Y_i \subset \ldots Y_d = Y$

s.t.
$$Y_i$$
 generic with $\dim(Y_i) = i$ then
$$P_{k-i-1}H^k(X) = \ker(H^k(X) \to H^k(f^{-1}(Y_i)))$$

• the Relative Hard Lefschetz Theorem holds:

$$L^{I}: Gr_{d-I}^{P}(H^{*}(X)) \stackrel{\cong}{\to} Gr_{d+I}^{P}H^{*+2I}(X)$$

$$\times \mapsto \times \cup \alpha^{I}$$

where $\alpha \in H^2(X)$ is a relative ample class

P = W conjecture

• recall Hitchin map $\begin{array}{ccc} \chi: & \mathcal{M}_{\mathrm{Dol}} & \to & \mathcal{A} \\ (E,\phi) & \mapsto & \mathrm{charpol}(\phi) \end{array}$ is proper, thus induces perverse filtration on $H^*(\mathcal{M}_{\mathrm{Dol}})$

Conjecture ("P=W", de Cataldo-Hausel-Migliorini 2008)

 $P_k(\mathcal{M}_{\mathrm{Dol}}) \cong W_{2k}(\mathcal{M}_{\mathrm{B}})$ under the isomorphism $H^*(\mathcal{M}_{\mathrm{Dol}}) \cong H^*(\mathcal{M}_{\mathrm{B}})$ from non-Abelian Hodge theory.

Theorem (de Cataldo-Hausel-Migliorini 2009)

P = W when $G = GL_2, PGL_2$ or SL_2 .

- Define $PE(\mathcal{M}_{\mathrm{Dol}}; x, y, q) := \sum q^k E(Gr_k^P(H^*(\mathcal{M}_{\mathrm{Dol}})); x, y)$
- $PE(\mathcal{M}_{Dol}; x, y, 1) = E(\mathcal{M}_{Dol}; x, y) = E(\mathcal{M}_{DR}; x, y)$
- Conjecture $P = W \Rightarrow PE(\mathcal{M}_{\mathrm{Dol}}; 1, 1, q) = E(\mathcal{M}_{\mathrm{B}}; q)$
- RHL $\rightsquigarrow PE(\mathcal{M}_{\mathrm{Dol}}; x, y, q) = (xyq)^d PE(\mathcal{M}_{\mathrm{Dol}}; x, y; \frac{1}{qxy}) \rightsquigarrow$

Conjecture (Topological Mirror test, TMS)

$$PE_{\mathrm{st}}^{B^e}\Big(\mathcal{M}_{\mathrm{Dol}}^d(\mathrm{SL}_n); x, y, q\Big) = (xyq)^d PE_{\mathrm{st}}^{\hat{B}^d}\Big(\mathcal{M}_{\mathrm{Dol}}^e(\mathrm{PGL}_n); x, y, \frac{1}{qxy}\Big)$$

Conclusion

- The TMS above unifies the previous Dol,DR,B-TMS conjectures (Theorem when n = 2)
- Fibrewise Fourier-Mukai transform aka S-duality should identify
 - $S: H_p^{r,s}(\mathcal{M}_{\mathrm{Dol}}(\mathrm{SL}_n)) \cong H_{st,d-p}^{r+d/2-p,s+d/2-p}(\mathcal{M}_{\mathrm{Dol}}(\mathrm{PGL}_n))$ this solves the mirror problem (Theorem over regular locus of χ)
- (Ngô 2008) proves the fundamental lemma in the Langlands program by proving "geometric stabilisation of the trace formula" which for SL_n and PGL_n can be reformulated to prove TMS over integral spectral curves, which when n is a prime, can be extended to a proof of TMS everywhere.

Some open questions

- Can fibrewise Fourier-Mukai Transform be extended to integral spectral curves? For GL_n the answer is yes by [Arinkin, 2010]
- for reduced, but non-reducible spectral curves? some relevant work by Esteves, López-Martín, . . .
- for non-reduced spectral curves? some recent work by [Drezet, 2009]
- Can the cohomology of the Hitchin fibers computed? for integral (cf. [Ngô, 2008]) reduced but reducible (cf. [Chaudouard-Laumon, 2009]) non-reduced spectral curves?
- Can Gross-Siebert's approach to mirror symmetry (i.e. degenerating the CY's to a reducible one) applied to Hitchin systems? \rightsquigarrow Hitchin systems for singular curves? even only for ordinary double points and for GL_1 ?
- ramifications, other reductive groups?